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It is well known that S-arithmetic subgroups of reductive algebraic groups over

number fields have “all” finiteness properties (see [BS 2]). On the contrary there

exist many counterexamples in the function field case.

Let F be a finite extension of Fq(t), G an almost simple algebraic group of

F -rank r, 0S an S-arithmetic subring of F with #S = s, rv the Fv-rank

of G over the completion Fv of F for v ∈ S, and finally Γ a S-arithmetic

subgroup of G(F ).

We are interested in the following question: Is it true that

Γ is of type Fn−1 but not Fn iff r > 0 and
∑

v∈S

rv = n ?

(For the definition of finiteness properties, cf the introduction of [Ab].)

The answer is yes in the following cases:

(a) G = SL2: see [St 2].

(b) n = 1 or 2 (finite generation or finite presentability): see [B 2].

(c) G classical, 0S = Fq[t] under the assumption that q is big enough

compared with r: see [Ab] and [A] for SLn.

In particular it is not known if the assumption in (c) is necessary. For r = 0, in

the so-called cocompact case, Γ is of type F∞ (cf. [BS 2]).

This paper is an attempt to attack this question with some new methods — old

in other contexts. First of all, inspired by the work of Serre, Quillen, Stuhler

and Grayson (cf. [G1,2]), we use semi-stability for reduction theory, and the

idea to determine the homotopy type of the boundary of the unstable region by

retraction.

In this part we only deal with Chevalley groups G and arithmetic rings OS for

#S = 1. The groups G(F ) and Γ act on the Bruhat–Tits building X = Xv,

corresponding to G and Fv; Γ leaves the unstable region X ′ invariant. X ′ has
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a cover whose nerve is given by the spherical Tits building X0, so it is (r − 1)-

spherical. The retraction to its boundary is not possible as in the number field

case, since the geodesic lines are branching (discretely).

Therefore we have to “split up” X ′ into apartments, thereby constructing a bigger

complex X̃ ′, which has a cover with nerve OppX0, defined by an opposition

relation in X0. This complex was first considered by Charney for G = GLn, by

Lehrer and Rylands for classical groups who called it “split building”, finally v.

Heydebreck showed in the general case that this complex is also (r− 1)-spherical

— so is X̃ ′.

X̃ ′ can be retracted to its boundary Ỹ , but Ỹ is not finite modΓ. Thus we have

to consider a subcomplex X̃ ′
Γ, where opposition is defined only with respect to Γ

and to show that X̃ ′
Γ is a deformation retract of X̃ ′. Now we obtain that ỸΓ is

finite modulo Γ and can deduce the Fn−1-property of Γ. For the negative part,

i.e. Γ is not of type Fn, one should come back to filtrations, the method used

for the proofs of (a), (b) and (c) above, but for the moment I have no detailed

argument. Thus we sketch the proof of the following

Theorem. The S-arithmetic subgroup Γ = G(OS) of a simply connected almost

simple Chevalley group G of rank r is for s = 1 of type Fr−1.

Conjecture: Γ is not of type Fr.

I hope that this program will turn out to be useful even in more general situations:

For coefficient rings which are defined by more than one prime or, on the other

side, for non-split groups.

I am grateful to Peter Abramenko for constructing a very instructive counter-

example to an earlier version of this paper, and I would like to thank him, Kai-

Uwe Bux and Anja von Heydebreck for helpful discussions, and Mrs. Christa

Belz for carefully writing several versions.
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1. Notations

Let us denote by

F a finite extension of the field of rational functions Fq(t) in t

with coefficients in the finite field Fq, q = pm;

F̂ = Fv the completion of F with respect to the valuation v of F ;

O and Ô the valuation rings with respect to v in F or F̂ ;

G a simply connected almost simple Chevalley group, defined

over F ;

r the F -rank of G, I = {1, . . . , r};

T a maximal (split) F -torus of G;

∆ = {αi}i∈I a set of simple roots of G with respect to T ;

P∆0
a parabolic subgroup of G of cotype ∆0, ∆0 ⊆ ∆, which

means that ∆−∆0 is a set of simple roots for the semi-simple

part of P∆0
, especially

B = P∆ the Borel subgroup, defined by ∆, and

Pα the maximal parabolic subgroup for ∆0 = {α}.

X the Bruhat–Tits–building, corresponding to G and v with

its simplicial structure and its metric topology;

A = XT the apartment of X corresponding to T , thus A ∼ Rr;

{αi(x)}i∈I the coordinates of x ∈ A which means by abuse of notation

the following: If x = t · x0, x0 the “origin” of A, t ∈ T (F̂ ),

then αi(x) := −v(αi(t));

X0 the spherical Tits building of G(F );

Γ the S-arithmetic subgroup of G(F ) for S = {v}.

2. Reduction Theory and the Unstable Region

We shall use reduction theory for arithmetic groups over function fields in the

version described by Harder in [H2], 1.4. He defines

π(x, P ) := vol (Kx ∩ U(F̂ ))

for a special point x ∈ X, corresponding to a maximal compact subgroup Kx of

G(F̂ ) and a F -parabolic group P and its unipotent radical U ; the volume vol
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comes from the adelic Tamagawa measure. The function

dP (x) := logq π(x, P )

can be extended by linear interpolation to all points x in an apartment A = XT ,

defined by a maximal split F̂ -torus T , contained in P and thereby uniquely for

all x ∈ X. We may consider dP as a co-distance with respect to the simplex σP ,

given by P in the spherical building X∞ at infinity (cf. [Br2], VI.9).

For the action of T (F̂ ) on XT via adT we have the formula

dP (t · x) = dP (x) + logq |δP (t)|

where δP is the character “sum of roots in U”, which is a multiple of the dominant

weight ωP and the q-logarithm is the negative additive valuation −v(δP (t)).

For each Borel group B over F and its set ∆ = {α1, . . . , αr} of simple roots (with

respect to a F -torus T ), the maximal parabolic groups Pα (α ∈ ∆) containing B

and their fundamental weights ωPα
, one has

α =
∑

β∈∆

cα,βωPα
=
∑

β∈∆

c′α,βδPα

where cα,β are the integral coefficients of the Cartan-matrix, such that c′α,β ∈ Q;

in particular, c′α,α is positive and c′α,β for β 6= α is zero or negative (for at most

3 β’s). Using these coefficients, Harder defines numerical invariants

nα(x, B) :=
∏

β∈∆

π(x, Pβ).

Again we pass to the additive version, setting

cB,α(x) := logq [nα(x, B)]

and obtain for each b ∈ B(F ) the relation

cB,α (b · x) = cB,α(x) + logq |α(b)|

= cB,α(x) − v(α(b))

cB,α is an affine linear function on the apartment XT ; we define the origin OB by

cB,α(OB) = 0 for all α ∈ ∆ and by abuse of notation α(t · OB) := −v(α(t)) for

t ∈ T (F ), thus we get by linear interpolation a set of affine coordinates

{α1(x), . . . , αr(x)} for each point x ∈ XT .

Now we are able to state the main theorems of reduction theory (for Cheval-

ley groups):
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(A) There exists a constant C1 such that for all x ∈ X there is a F -Borel group

B with cB,α(x) ≥ C1 for all α ∈ ∆; then x is called “reduced with respect to

B”.

(B) There exists a constant C2 ≥ C1, such that for x ∈ X reduced with respect

to B and B′, and cBα
(x) ≥ C2 for all α ∈ ∆0 ⊆ ∆, P = P∆0

⊇ B, it follows

P ⊇ B′; then x is called “close to P”, P is uniquely determined.

(C) There exists a constant C3 ≥ C2, depending on the arithmetic group Γ,

such that for x ∈ X, reduced with respect to B and with cB,α(x) ≥ C3 for

all α ∈ ∆0 ⊆ ∆, we have for the unipotent radical U of the parabolic group

P = P∆0
⊇ B

U(F̂ ) = (U(F̂ ) ∩ Kx)(U(F ) ∩ Γ);

x is then called “very close to P”.

(D) For each constant C ≥ C1 the set

XC :=

{
x ∈ X

∣∣∣∣
cB,α(x) ≤ C for all α ∈ ∆ and all B

for which x is reduced with respect to B

}

is Γ-invariant and XC/Γ is compact.

(E) The number of Borel subgroups over F of G belongs to finitely many classes

under Γ-conjugation (see [B1], 8).

Remark. The constant C1 can be chosen as C1 ≤ −2g − 2(h − 1) where g

denotes the genus of F and h is a “class-number” (for the precise definition see

[H1], 2.2.6). For example, if Γ = SLn (Fq[t]) we may use C1 = 0, but in general

C1 is negative.

We define the cone or sector of points in XT , reduced with respect to B ⊃ T by

DB,T := {x ∈ XT |αi(x) ≥ C1 for i = 1, . . . , r}

Warning: For different Borel groups B and B ′, containing the same torus T , the

origins OB und OB′ must not coincide and therefore the sectors DB,T , B ⊃ T do

not cover in general the apartment XT : see example below.

For a F parabolic group P of cotype ∆0 6= ∅, we denote by X ′
P the set of all

points x ∈ X which are close to P :

X ′
P :=

{
x ∈ X

∣∣∣∣
cB,α(x) ≥ C1 for all α ∈ ∆ \ ∆0

cB,α(x) ≥ C2 for all α ∈ ∆0
for all B ⊆ P

}
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or X ′
P :=

⋃

B⊆P

DB :=
⋃

B⊆P

(
⋃

T⊆B

DB,T ∩ X ′
P

)

and call

X ′ :=
⋃

P

X ′
P =

⋃

P max

X ′
P

the unstable region of X; the name is given in analogy to the description with

vector bundles for the group G = SLn (cf. [G1], 4).

For a F -parabolic group Q let P run over all maximal F -parabolic groups which

contain Q; then we have

X ′
Q =

⋂

P⊇Q

X ′
P .

We obtain a polyhedral decomposition of X ′, defining

X ′′
Q := X ′

Q \
⋃

Q1$Q

(X ′
Q ∩ X ′

Q1
) .

In the special case, where C1 = 0, we have in a fixed sector DB,T the following

descriptions:

X ′
Q ∩ DB,T = {x ∈ DB,T |α(x) ≥ 0 for all α ∈ ∆, α(x) ≥ C2 for all α ∈ ∆0}

X ′′
Q ∩ DB,T = {x ∈ DB,T | 0 ≤ α(x) ≤ C2 for all α ∈ ∆ \ ∆0,

α(x) ≥ C2 for all α ∈ ∆0}

where Q = P∆0
.

In particular for Q = B, which means ∆0 = ∆, X ′′
B ∩DB,T is a cone inside DB,T ,

for Q = P maximal, i.e. ∆0 = {α}, we get for X ′′
P ∩ DB,T a cylindric convex set,

furthermore infinite prisms etc.

Finally we have X ′
P =

⋃
Q⊆P

X ′′
Q .

Remark. Assume we have an enumeration of the set of simple roots, given by

a type function on the vertices of the spherical building X0, then for x ∈ X ′′
Q

the set of maximal parabolic subgroups P containing Q defines a chain which

generalizes the “canonical filtration” of vector bundles for G = SLn (cf. [G1]) or

respectively lattices in the number field case (cf. [St1] and [G2]).

Above all we are interested in the boundary Y := ∂X ′ of the unstable region,
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which can be described for a parabolic group Q of cotype ∆0 6= ∅ as follows:

YQ := ∂X ′′
Q :=





x ∈ X ′′
Q

∣∣∣∣∣∣∣∣∣

cβ,α(x) ≥ C1 for all α ∈ ∆ \ ∆0 and all

B ⊆ Q

cβ,α(x) ≥ C2 for all α ∈ ∆0 and equality for

at least one B ⊆ Q





Y = ∂X ′ :=
⋃
Q

∂X ′′
Q .

In the next step we distinguish geodesic lines in X ′′
Q: A point x ∈ X ′′

Q with

coordinates α(x) for an appropriate B determines uniquely a boundary point

y ∈ YQ by setting α(y) = α(x) for all α ∈ ∆ − ∆0 and α(y) = C2 for all

α ∈ ∆0, the segment xy lies on a geodesic. The “geodesic action” on this line

in the apartment XT is given by the torus T∆0
:= {t ∈ T | α(t) = 0 for all

α ∈ ∆ − ∆0}, contained in the radical of Q = P∆0
, centralizing its semi-simple

part. Along these geodesic lines we can define a retraction of X ′′
Q to its boundary

YQ, for instance parametrized by the distance function dQ. Therefore the local

definitions fit together for X ′
Q, but unfortunately they define no retraction from

X ′
Q to ∂X ′

Q since the geodesic lines are branching into different apartments.

We shall need a further retraction from the sets X ′
P to “infinity” along geodesics

of “type P∆0
”, given by the action of T∆0

, see next section.

Example. G = SLn, Γ = SLn(Fq[t])

1. In this case Γ admits a strict simplicial fundamental domain D which is a

sector DB,T for a fixed pair T ⊂ B: see [Ab], I.3); this result can also be

deduced from reduction theory with Siegel sets. This corresponds to the

fact that we can choose C1 = 0, C2 = 1 in Harder’s theory for this case.

One may then define the polyhedral decomposition locally in D and extend

it to X by the action of Γ.

2. In order to show that origins OB and OB′ of different sectors in an apartment

must not coincide, we use n = 3: Denote by B+ the upper triangular

matrices in SL3, by B− = w B+w−1 with w =




0 0 1

0 −1 0

1 0 0


 the lower

triangular matrices, define B ′ = g · B− := g B−g−1 = g w B+w−1g−1 with

g =




1 0 t−n

0 1 0

0 0 1


, n ∈ N, such that B+ and B′ are opposite Borel groups,
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defining an apartment A. We obtain an equation gw = γwb with γ ∈ Γ, b ∈

B (Fq(t)), explicitly



t−n 0 1

0 −1 0

1 0 −1


 =




1 0 0

0 −1 0

tn 0 −1







t−n 0 0

0 1 0

0 0 tn







1 0 t−n

0 1 0

0 0 1


.

Compute

cB′,α′(OB) = cgw·B+, gw(α)(gw(OB))

(since w(OB) = OB and g fixes a half-plane containg OB)

= cγwB+,γw(α)(γw · b(OB))

= cB+,α(b(OB))

(by left-invariance of the measure)

= cB+,α(OB) + v(α(b)) = 0 − n

which is valid for α = α1 and α = α2, thus OB 6= OB′: to get OB′ , we

have to shift OB in “direction of B′”, precisely: with the coordinates α1, α2

corresponding to B one has OB′ = (−n,−n).

3. Compactification of the Bruhat–Tits Building

For the boundary at infinity of X we do not use the topologization of the building

at infinity due to Borel–Serre; it is more convenient to have the compactification,

constructed by Landvogt in [L], but we restrict it to the part defined over F .

For a local field F̂ and a reductive algebraic group H denote by X(H) the Bruhat–

Tits building for the pair (H, F̂ ), then define

X := X(G) :=
⋃

P∈P

X (P/Ru(P )) ,

where P is the set of all parabolic F -subgroups of G and Ru(P ) the unipotent

radical of P (cf. [L], 14.21). X is equipped with a topology which comes from the

F̂ -analytic topology on G(F̂ ) and the compactification of apartments, described

below, and it induces the metric topology on each of the buildings X(P/Ru(P )).

Consequently we consider only the — incomplete, but good (cf. [Br2], VI.9) —

apartment system A, defined over F , which is in 1-1-correspondence with the

apartment system A0 of the Tits building X0 of G(F ).

For A ∈ A denote by V the underlying F̂ -vectorspace, by Σ the Coxeter complex

with respect to G in V , by C a chamber of Σ and by ∆(C) a set of simple roots,
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such that C = {x ∈ A | α(x) ≥ 0 for all α ∈ ∆(c)}. For an open face C ′ of

C, set ∆(C ′) := {α ∈ ∆(C) | α|C′ > 0} and denote by 〈C ′〉 the subspace of V ,

generated by C ′. V C :=
⋃

C′∈Σ

C′⊆C

V/〈C ′〉 is called the corner defined by C.

Provide R̃ := R ∪ {∞} with its natural topology and topologize V C in such a

way that the map f : V C −→ R̃n, given by

f(x + 〈C ′〉) :=

{
∞ for α ∈ ∆(C ′)

α(x) for α ∈ ∆(C) \ ∆(C ′)

is a homeomorphism.

A set U ⊆ V :=
⋃

C′∈Σ

V/〈C ′〉 is called open if U ∩ V C is open for all chambers

C ∈ Σ; by that V becomes compact and is called the compactification of V .

A := A × V V
Σ

is then the compactification of A with corners AC (cf. [L], §2).

We abbreviate in the following: X(P ) := X(P/Ru(P )), and we define the

boundary of X by

∂X := X \ X =
⋃

P 6=G

X(P ) .

The closure of X(P ) in X is given by
⋃

Q⊆P

X(Q); we shall also need

XP := X ∪ X(P ).

Our next aim is to determine the homotopy type of the unstable region X ′, using

the cover with the sets X ′
P , P a maximal parabolic F -group. The nerve of this

cover is the spherical Tits building X0 which is known to be (r − 1)-spherical.

For this purpose we have to show that the sets X ′
P and their intersections X ′

Q

(Q an arbitrary F -parpabolic group) are contractible, and to prove this we con-

struct retractions to infinity, more precisely to X(Q), defined by the geodesic

action of the torus T∆0
for Q = P∆0

. To describe it in a sector DB,T , T ⊇ T∆0
, it

is helpful not to use all local coordinates α for DB,T (α ∈ ∆), but only those α, ly-

ing in ∆−∆0 and to complete them with the functions dP for all P = Pα, α ∈ ∆0

(this is admissible since the roots in ∆−∆0 and the fundamental weights for ∆0

are linearly independent). Then we can define the map

rQ,B,T : DQ,B,T × [0,∞] −→ DQ,B,T (Q ⊇ B)

for DQ,B,T := DB,T ∩ X ′
Q ∩ XQ where the closure is meant in X, given by

rQ,B,T (x, t) = xt with
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α(xt) = α(x) for all α ∈ ∆ − ∆0 and x ∈ X

dP (xt) = dP (x) + t for all P = Pα, α ∈ ∆0 and x ∈ X

α(x) = x for all α ∈ ∆, x ∈ X \ X.

For different tori T and T ′, containing T∆0
, points x ∈ DB,T and x′ ∈ DB′,T ′

can have the same image for t = ∞ in X(Q), described by different systems

of coordinates α, coming from the apartments XT and XT ′ respectively, but the

coordinates dP for P ⊇ Q are defined independently from these apartments. Thus

the maps rQ,B,T fit together, defining for t = ∞ a retraction

rQ : X ′
Q ∩ XQ −→ X(Q) .

The map rQ is continuous since its restrictions to the sectors DB,T are fibrations.

Moreover, the map rQ is surjective: For each point x ∈ X(Q) we find a point x′

projecting to x for sufficiently large values dP (x′) for all P ⊇ Q such that x′ is

close to Q, and therefore exists B ⊆ Q for which x′ is reduced, so x′ ∈ DB,T for

some T ⊆ B and x′ ∈ DB,T ∩ X ′
Q.

Finally the affine building X(Q) is contractible, thus by the retraction rQ the set

X ′
Q ∩ XQ is also contractible and as a metrizable manifold the same is true for

its interior X ′
Q (cf. [BS1], 8.3.1).

Proposition 1. The unstable region X ′ is (r − 1)-spherical.

Proof: X ′ =
⋃

P∈Pmax

X ′
P with Pmax := {P maximal F -parabolic in G}, the non-

empty intersections of the covering sets X ′
P are of type X ′

Q, Q F -parabolic, and

we have seen above that alle this sets are contractible. The covering sets are closed

and the cover is locally finite because X is a locally finite simplicial complex. Its

nerve is given by the spherical Tits building X0 as an abstract complex which is

known to be (r− 1)-spherical. Thus we obtain that X ′ is (r− 1)-spherical, using

the same theorem as Borel–Serre in [BS1], 8.2.

Remark. For the group G = SLn (or G = GLn) proposition 1 was proved by

Grayson with a similar argument using vector bundles (cf. [G1], thm. 4.1).

The same idea can be used for ∂X := X − X =
⋃

P 6=G

X(P ). We have the natural

cover ∂X =
⋃

P 6=G

X(P ) with X(P ) =
⋃

Q⊆P

X(Q); all these sets are contractible as

Bruhat–Tits buildings or closures of them and their intersection pattern is given

again by X0. So we get the

Corollary. ∂X is (r − 1)-spherical.

10



4. Buildings with Opposition

(a) In each apartment A0 of a spherical building X0 there exists a natural

opposition involution. If A0 is described as an abstract Coxeter complex

Σ = Σ(W, S) with group W and generating set S, WJ = 〈J〉 for J ⊆ S,

i.e. Σ = {wWJ | w ∈ W, J ⊆ S} and w0 denotes the element of maximal

length in W , then define

opΣ(w WJ) := ww0WwoJw0
;

expecially if the Coxeter diagram has no non-trivial symmetry, then

w0Jw0 = J for all J .

If X0 is the spherical Tits building of a group G(F ) (G reductive, F a field),

the simplices of X0 may be identified with the proper F -parabolic subgroups

of G(F ). Each such group has a Levi decomposition P = L n Ru(P ), and

two parabolics are called opposite if they have a common Levi subgroup,

more precisely,

P op P ′ : ⇐⇒ P ∩ P ′ is a Levi subgroup of P and P ′.

[Ru(P )](F ) acts simply transitive on the set of all parabolic subgroups

opposite P (cf. [BT], § 4), thus we can identify them with the elements of

this radical if we distinguish one opposite group.

(b) Pairs of opposite simplices of a spherical building with incidence in both

components provide again a simplicial complex. It was introduced by R.

Charney (see [C]) for G = GLn, even over Dedekind domains in the lan-

guage of flags; she showed that it has the same homotopy type as the

spherical building of GLn itsself. Lehrer and Rylands (see [LR]) defined

such a complex for reductive groups G — they called it the “split building”

of G — and proved the corresponding homological result for types An and

Cn. A. von Heydebreck (see [vH]) considered this complex for arbitrary

spherical buildings and showed that it is also (n−1)-spherical in dimension

n. We use the definition

Opp X0 := {(P, P ′) | P op P ′}.

(c) Moreover, we need a subcomplex of OppX0, where the opposition relation

is defined with respect to Γ.
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As a first step we distinguish an apartment A1 = XT1
of X, T1 a maximal split

F -torus such that N(T1) ∩ Γ contains (a copy of) the Weyl group W of X0 (for

instance, A1 could contain a vertex with stabilizer G(Ô) ⊃ G(Fq) ⊃ W ). We fix

a Borel group B1 ⊃ T1 and its opposite B′
1 in A1. The choice of B′

1 defines an

identification of OppB1 := {B′ | B′ opB1} with UB1
(F ), and we can consider the

subset OppΓ B1, corresponding to UB1
(F ) ∩ Γ =: U1 ∩ Γ such that

OppΓ B1 := {B′ = γ1B
′
1γ

−1
1 | γ1 ∈ U1 ∩ Γ}.

We extend this notion Γ-invariant: For B = γB1γ
−1 with γ ∈ Γ, the element

γ is determined up to B1(F ) ∩ Γ, so we obtain different opposite Borel groups

B′ = δB′
1δ

−1 with δ ∈ γ · (U1 ∩ Γ) — neglecting the torus component in T1 ⊂ B1

since it fixes also B′
1. Consequently the identification of Opp B with UB(F )

depends on the choice of δ, but this has no influence on the definition

OppΓB := {B′ = γ′B′(γ′)−1 | γ′ ∈ UB(F ) ∩ Γ}

because UB = γU1γ
−1, which implies with u, u′ ∈ U1 ∩ Γ:

γ′B′(γ′)−1 = γu′γ−1γuB′
1(γu)−1(γu′γ−1)−1 = γu′uB′

1(γu′u)−1

thus OppΓB = γ · OppΓB1γ
−1.

In general, not all F -Borel groups are conjugate under Γ; there exist finitely many

Γ-conjugacy classes (see part E of reduction theory). We fix a set

B1, B2 = g2B1g
−1
2 , . . . , Bh = ghB1g

−1
h (gi ∈ G(F )) of repesentatives and also of

their opposite groups B ′
1, B

′
2 = g2B

′
1g

−1
2 , . . . , Bh = ghB

′
1g

−1
h , and define in the

same way as above

OppΓBi := {B′ = γiB
′
iγ

−1
i | γi ∈ UBi

(F ) ∩ Γ}, i = 1, . . . , h

and for B = γBiγ
−1, B′ = γB′

iγ
−1

OppΓB := {B′ = γ′B(γ′)−1 | γ′ ∈ UB(F ) ∩ Γ}

which does not depend on the special choice of B ′ (but we don’t have

gi OppΓB1g
−1
i = OppΓBi in general).

Finally we can make the same procedure with parabolic groups, starting with the

set of standard parabolic groups Q1 containing B1 and their oposites Q′
1 ⊇ B′

1.

Since Q1 and Q′
1 have a Levi subgroup in common, we obtain all Γ-opposites of

Q1 by conjugation of Q′
1 with elements from UQ1

(F ) ∩ Γ and we have to restrict

in all definitions above the groups UB(F ) ∩ Γ to its subgroups UQ(F ) ∩ Γ for

Q ⊇ B. We denote this relation by OppΓ and define

OppΓX0 := {Q, Q′) | Q opΓQ′}.
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5. Proof of the theorem (sketch)

In order to define a retraction from the unstable region to its inner boundary, we

have to split it up into apartments, thereby constructing a bigger complex (part

of an “affine split building”) as follows:

Denote by T ,B,Q and P the sets of maximal tori, Borel groups, parabolic and

maximal parabolic groups in G, all defined over F (for other notations cf. section

2)

Z := {(x, T ) ∈ X ′ × T | ∃B ∈ B : x ∈ DB,T},

by definition DB,T ⊂ XT and T ⊂ B.

Since a maximal torus T is uniquely determined by a pair of opposite Borel groups

(B, B′), say T = TB,B′ , there exists an equivalent description

Z = {(x, B′) ∈ X ′ × B | ∃B ∈ B : B opB′, x ∈ DB,T for T = TB,B′}

In Z we need an equivalence relation, according to the structure of OppX0, so

we define

(x1, T1) ∼ (x2, T2) ⇐⇒

{
x1 = x2 =: x ∈ DB1,T1

∩ DB2,T2

∃Q ∈ Q : Q ⊇ B1, Q ⊇ B2, x ∈ X ′′
Q

The group Q is uniquely determined by reduction theory and this fact implies the

transitivity of the relation. We can define the equivalence also using the second

description of Z:

(x1, B
′
1) ∼ (x2, B

′
2) ⇐⇒





x1 = x2 =: x

∃ (Q, Q′) ∈ OppX0 : Bi ⊆ Q, B′
i ⊆ Q′ for i = 1, 2

x ∈ X ′′
Q

In this situation the common Levi subgroup L of Q and Q′ is the centralizer of a

torus TL (not necessarily maximal), contained in T1 ∩ T2. Let us denote by

[x, B′] the class of (x, B′) and by

X̃ ′ := Z/ ∼= {[x, B′] | (x, B′) ∈ Z} and

X̃ ′
Q,Q′ := {[x, B′] ∈ X̃ ′ | x ∈ X ′

Q, B′ ⊆ Q′} for (Q, Q′) ∈ Opp X0 ,

and finally the analogous definition for X̃ ′′
Q,Q′ with x ∈ X ′′

Q.

The topology of X̃ ′ is given as follows: We choose for X ′ the metric topology as a

subspace of the affine building X, for T and B the F̂ -analytic topology induced

from G(F̂ ), since all maximal tori in T or all Borel groups in B are conjugate
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under G(F ); finally we have the product topology on Z and the quotient topology

on X̃ ′.

One should emphasize that every point (x, B ′) has an open neighbourhood in Z

of the form U × V , where U is the disjoint union of open sets UT in XT , because

the complex X is locally finite, so we can avoid ramification inside UT . For a

point [x, B′] in X̃ ′′
Q,Q′ ⊂ X̃ ′ there exists a neighbourhood U × V , where U is the

union of segments of geodesic lines in X̃ ′′
Q,Q′, defined by the torus T = T∆0

if Q

and Q′ are both of cotype ∆0.

We want moreover to define a boundary at infinity for X̃ ′, generalizing the con-

struction of Landvogt. There the Bruhat–Tits buildings X(Q) := X(Q/Ru(Q)),

which contribute to the boundary ∂X are defined only by quotient groups. For

a pair (Q, Q′) of opposite parabolic groups, the common Levi group L = Q ∩ Q′

is isomorphic to Q/Ru(Q), so we may consider X(L) instead of X(Q), defined

by a subgroup of G. For X̃ ′ it is more convenient to split up also ∂X, using the

different buildings X(L) instead of a single X(Q). Therefore we set

∂∞X̃ ′ :=
⋃
L

X(L) , where L = Q ∩ Q′, (Q, Q′) ∈ OppX0.

X
′

:= X̃ ′ ∪ ∂∞X̃ ′ .

The details are the same as in Landvogt’s construction, but let us remark that

for a point of ∂∞X̃ ′ each neighbourhood meets infinitely many “apartments”

X̃ ′
T := {[x, T ] ∈ X̃ ′ | x ∈ XT}.

Now we can imitate the proof of proposition 1, in order to determine the homotopy

type of X̃ ′. We have a cover

X̃ ′ =
⋃

Opp X0

X̃ ′
Q,Q′ =

⋃

(P,P ′)

X̃ ′
P,P ′ with (P, P ′) ∈ Opp X0 ∩ (P × P)

with closed sets; their intersections are given by

X̃ ′
Q,Q′ =

⋂{
X̃ ′

P,P ′

∣∣∣ (P, P ′) ⊇ (Q, Q′)
}

thus this cover has the nerve Opp X0.

The covering sets and their intersections can be surjectively contracted to X(L) ⊂

∂∞X̃ along geodesic lines defined by the torus TL in the center of L = Q∩Q′ and

X(L) is a contractible space, so X̃ ′
Q,Q′ is also contractible. Using the result of

v. Heydebreck, cited in section 4, we know that Opp X0 is (r − 1)-spherical and

therefore we have
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Proposition 2. X̃ ′ is (r − 1)-spherical.

But in contrast to X ′ it is now possible to retract X̃ ′ to its “inner boundary”

(cf. section 2)

Ỹ := ∂0X̃
′ := {[x, B′] ∈ X̃ ′ | x ∈ Y }

along geodesic lines in X̃ ′′
Q,Q′, which do not ramify in X̃ ′, because we identified

different apartments only in these sets X̃ ′′
Q,Q′, and the geodesics coincide in their

intersections. Thus we have

Corollary. Ỹ is (r − 1)-spherical.

We need the analogous results for a subcomplex X̃ ′
Γ of X̃ ′, replacing in the def-

initions the relation “op” by “opΓ”, consequently we have to admit only pairs

of Borel groups (B, B ′) with B opΓ B′ and tori TB,B′ for (B, B′) ∈ OppΓX0. For

this purpose we require that also OppΓX0 is (r − 1)-spherical witch is true for

G = SLn by the proof of Charney (see [C]), for the general case see the appendix.

Then we obtain

Proposition 3. X̃ ′
Γ and ỸΓ := Ỹ ∩ X̃ ′

Γ are (r − 1)-spherical.

The next step is to show that ỸΓ is modulo Γ a finite complex — this is the

only point where we need X̃ ′
Γ instead of X̃ ′. For the points of ỸΓ the numerical

invariants of reduction theory are bounded from above (and below by definition),

so part D of the “main theorem” says that ỸΓ/Γ is compact. Moreover, by part

(E) there exist only finitely many conjugacy classes of Borel groups, therefore in

a set of representatives [y, B ′] for ỸΓ/Γ with y ∈ DB,T only finitely many Borel

groups B occur, and since B ′ opΓ B, there is only one B ′ modulo Γ for each

B : ỸΓ/Γ is a finite complex. Since all stabilizers in Γ are finite, we can apply

the finiteness criterion of K. Brown (see [Br1], 1.1 and 3.1) to get

Proposition 4. Γ is of type Fr−1.

Remark to the conjecture “Γ is not of type Fr”:

Construct an infinite series of (r − 1)-spheres Sk in Y = ∂0X
′, which are con-

tractible only in growing parts Xk, defined by a (rough) filtration of X; then

{πr−1(Xk)} is not “essentially trivial” in the sense of K. Brown (see [Br1], 2).
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6. Appendix

For the group G = SLn the complex OppΓX0 is also (r − 1)-spherical by [C] and

so are X̃ ′
Γ and ỸΓ. It is not true that OppΓX0 is a deformation retract of Opp X0,

as was shown by Abramenko, who constructed a counter-example. But we have

the following

Lemma. X̃ ′
Γ is a deformation retract of X̃ ′.

Proof: We wish to map a point [x, B ′] of X̃ ′ with x ∈ DB,T ⊂ XT , B opB′,

T = TB,B′ to [x, B′
0] with the same x ∈ X ′ and B′

0 opΓ B, obtaining a new torus

T0 := TB,B′
0
.

Identifying the Borel groups opposite to B with elements of U(F ) (the unipotent

radical of B), for [x, B ′] the group B′ corresponds to an element of U(F ) ∩ Kx

with Kx = StabG(F )(x) since x ∈ XTB,B′ . This compact group contains finitely

many elements of the discrete group U(F ) ∩ Γ; we have to make a choice: There

is one element, defining B′
0 and T0, such that XT0

∩XT is maximal because the in-

tersection is given as the intersection of half-apartments, defined by root groups,

and for a Chevalley group, U is the semi-direct product of its root-groups. This

definition is compatible with the equivalence relation in Z and the map induces

the identity on X̃ ′
Γ.

This map is also continuous: The topology in the second component is induced

by the analytic topology of the group G(F̂ ); an element of U(F )∩Kx has a neigh-

bourhood which contains only one element of U(F ) ∩ Γ, due to its discreteness.

Remark. Since OppΓX0 is the nerve of a cover of X̃ ′
Γ, we proved indirectly that

it is (r − 1)-spherical. A direct proof for groups over Dedekind rings would be of

interest.
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